Category Archives: Energy Storage

What is the future of Ammonia as a fuel?

When considering future energy systems, it is very important to separate energy from fuel.

One of the characteristics of petroleum (oil) that makes it a perfect product is the
fact that it is both a “Primary Energy Source” and a “Fuel.” While in the context of
petroleum, these can be considered the same thing, future energy production
and fuel systems require that primary energy sources and fuels be understood as
two different things. This is due to the fact that there are no replacements waiting in the
wings that offer both properties.

Industrial mankind’s largest challenge at this point is replacing the large quantity of energy that
is currently provided by petroleum. Replacing oil as a fuel is also a serious problem, in large
part because the primary energy problem is so serious. If the primary energy problem is “solved,” many fuel solutions are available.

Combining carbon dioxide removed from air and hydrogen split from water using a Fischer–Tropsch like process could produce high quality diesel fuel essentially from air and water. Unfortunately, this process is so energy intense that it is not really considered a viable solution. And it is considered unlikely that we will come up with a primary source of energy so plentiful to make it viable.

So although this system is not viable, it does demonstrate that the most difficult challenge facing Industrial Man is replacing the energy that currently is obtained from fossil fuels.

Because the energy sources available to replace fossil fuel are of lower density and higher cost than fossil fuel, the energy efficiency of the fuel is also very important. Energy efficiency of fuel in this context refers to how much additional energy must be used to obtain, manufacture, use, and dispose of the fuel and its ingredients.

The most useful fuels are hydrocarbon fuel or fuels that are made from hydrogen and carbon. The hydrogen provides the large quantities of energy that are desirable in a fuel, while the carbon provides the storage and handling characteristics that make a fuel like diesel, jet, gasoline, and alcohols so desirable.

Carbon represents two serious challenges in regard to its future use as an ingredient in fuels.

1. Obtaining it:

Obtaining the clean carbon that is necessary to manufacture large quantities
of hydrocarbon fuels is not a trivial task. This is often overlooked as
carbon in the form of CO2 (carbon dioxide) is considered a pollutant at
nearly all points that it is emitted. But closer examination reveals some
problems.

  • Location:  Is the carbon source stationary or moving? Since we are usually talking about a gas, capturing and transporting it is expensive.
  • Cleanliness:  Most processes require clean carbon. If the source produces dirty carbon, cleaning it up can be a very energy intensive and financially expensive proposition.
  • Timeliness: Is the primary energy available at the same times as all of the other ingredients of the fuel? If not, what is the energy and financial costs of the storage?

2. Disposing of it:

What is the cost of disposing of it? Carbon is increasingly being implicated as a pollutant. This status means that the cost of using it as a component of fuel is likely to increase. It remains to be seen what the carbon taxes of the future will look like, but it looks increasingly likely that there will be clear penalties for emitting carbon into the atmosphere.
Hydrogen is often seen as the fuel that will be used to replace hydrocarbons. Hydrogen has some very serious limitations, including:

  • Very low density: The density of hydrogen is so low that shipping it as a gas using tanker type equipment that is similar in design to the equipment that is now used to transport petroleum is out of the question. Shipping it as a refrigerated liquid improves this substantially but is energy intense, and creates another challenging set of storage issues.
  • Flammability: Hydrogen is extremely flammable, it takes very little energy to ignite, and can self ignite under certain circumstances.
  • Leakage and embrittlement: Hydrogen can leak through many container and plumbing materials, and can make them brittle and dangerous. The most common and cost-effective materials for tanks and plumbing cannot be used.

There is one fuel that can replace hydrocarbons in many of the applications where
the density of hydrogen is too low. This fuel is ammonia. Ammonia is similar in
handling characteristics to propane and it is already commonly used in
industry and agriculture.

The advantages of ammonia in comparison to hydrogen are:

  • Higher Storage Density
  • Reduced Flammability
  • No Carbon.

Ammonia is composed from nitrogen and hydrogen, and therefore can be made using several
known methods from air, water, and large quantities of energy. Since we currently don’t
know how to capture large quantities of renewable energy, most ammonia today is made from natural gas.

Ammonia has some challenges that often disqualify it from consideration as a fuel.

  • Toxicity: Ammonia is toxic enough that is will likely not be approved for common, untrained use.
  • Odor: Ammonia has a very strong odor, although this is desirable as it is nature’s defense against the toxicity.
  • Storage Considerations: Ammonia is a gas at standard atmospheric conditions. Its storage characteristics are similar to propane, with about half the energy density. This disqualifies ammonia for some uses, such as aviation.

While clearly ammonia is not the magic bullet that some seek, a survey of the realities of carbon capture and disposal, photosynthetic efficiency, battery efficiency, and storage density indicate that there are no other fuels that are as ready to be pressed into service as ammonia.

Ammonia is already one of the most commonly used and synthesized chemicals. The most common use is fertilizer, and without ammonia fertilizer there would be large scale starvation. Although ammonia may be too difficult and toxic to handle by untrained operators, it is ready today for professional use.

Now we just need the energy.

What is more dangerous, coal energy or nuclear energy?

You’ve heard the politicians talk about clean coal technology and you’ve probably seen the clean coal advertisements as well. Both the politicians and the advertising campaigns have failed to answer two questions directly, “What is clean coal technology, exactly, and what benefits does clean coal technology promise to bring to your typical coal power plant?”  Both of these questions are fair questions that seem perfectly normal to ask.  I asked myself the same two questions, but no one could really answer either of them directly.  Clean coal technology is a technology that exists mainly in theory but not in practice.  At the time of this writing there isn’t a single coal power plant in the United States that has any sort of technology being used that you could classify as “clean coal technology.”  The beauty of clean coal technology is that is doesn’t have to exist yet.  When enough hype is created over something that is still in its infancy, then eventually you begin to believe it is real and that we should invest in it in order to make our future a cleaner one.  Since clean coal technology basically doesn’t exist, and since no one can give a exact definition of what this technology will do, I have come up with my own basic definition.

Essentially what clean coal technology is promising, is to clean up what is coming out of the smock stack(s) of a coal power plant. Clean coal technology is defined on Wikipedia as:

Clean coal technology is an umbrella term used to describe technologies being developed that aim to reduce the environmental impact of coal energy generation.[1]. These include chemically washing minerals and impurities from the coal, gasification (see also IGCC), treating the flue gases with steam to remove sulfur dioxide,carbon capture and storage technologies to capture the carbon dioxide from the flue gas and dewatering lower rank coals (brown coals) to improve the calorific quality, and thus the efficiency of the conversion into electricity.

Clean coal technology usually addresses atmospheric problems resulting from burning coal. Historically, the primary focus was on sulfur dioxide and particulates, due to the fact that it is the most important gas which leads to acid rain. More recent focus has been on carbon dioxide (due to its likely impact on global warming) as well as other pollutants[2]. Concerns exist regarding the economic viability of these technologies and the timeframe of delivery[3], potentially high hidden economic costs in terms of social and environmental damage[4], and the costs and viability of disposing of removed carbon and other toxic matter[5] [6].

I believe all of these ideas are novel, but the idea of CO2 being captured seems to be quite prevalent. This seems to be a very important thing on everyone’s agenda. Even on President Obama’s site, the only thing he mentions in the clean coal technology portion of his site is carbon sequestrating. It seems like we should focus on some other major issues with coal as well, like the fact that coal power plants emit radioactive particles. Coal plants emit more radiation into a surrounding environment than does a similarly sized nuclear power plant (Source: Scientific American and ORNL). Studies have shown that people experience more radioactivity next to coal plants, so why isn’t the general public afraid of coal power like they are nuclear power? Perception. Nuclear power has gotten the reputation as being highly radioactive and extremely dangerous. Nuclear power can be all of those horrible things, if it isn’t handled correctly.

Nuclear power isn’t a perfect energy producer, it has some drawbacks since it uses uranium, a finite resource, which, like crude oil or coal, does not have an endless supply, and long-term storage of the nuclear waste can be dangerous. Handling nuclear waste is a very serious problem, but coal power has a very similar problem with coal ash. Coal ash is a byproduct of coal combustion and it contains several toxic trace elements like uranium and heavy metals that are dangerous in certain quantities. Why then isn’t coal getting scrutinized for its byproduct, coal ash? Why isn’t there the same amount of panic towards a coal ash spill as there is for a nuclear waste spill? Again, I would have to blame this on perception and ignorance towards nuclear energy. The general public is afraid of nuclear waste because of the negative attention it generally gets, but much of the general public is unaware that coal ash is also a very dangerous substance.

Several dangers of coal ash are known, for example, it is said to increase the chance of cancer in surrounding communities and it can contaminate water with toxic metals and chemicals (See EPA Map for some known contaminated water sites).  Coal ash contamination is a very serious issue that needs to be dealt with, but for some reason the EPA has only been “promising” action since 2000.  Promises don’t help people much, especially when coal ash spills kill wildlife, destroy homes, pollute soil and contaminate water.  Below is a picture from the December 2008 Tennessee coal ash spill.

Courtesy of Brian Stansberry on Wikimedia

Courtesy of Brian Stansberry on Wikimedia

Without much doubt, coal will continue to be a important source for producing electricity. The need for clean coal technology is valid, but what part of coal is getting cleaned? Are we going to start storing coal ash in safer more contained places, instead of in open ponds, landfills and abandoned caverns?  Coal ash has the potential of being used for many things like cement, paints and metal castings, but very little of it gets used for any of this.  I hope coal ash begins to be disposed of properly, in a more environmentally and human friendly manner.

Neither coal power nor nuclear power are perfect solutions.  Coal, however, will continue to be used and it makes some sense to use coal. In a country that is in need of electricity and a country that has a significant amount of coal, it only makes sense to use it in certain applications.  Pushing for alternatives other than nuclear and other than coal would be the ultimate goal for generating societies electricity.

Ultimately, I hope to give an increased awareness of coal power and the major issues inherited in using it as a source for electricity. Hopefully coal stops being, what seems like, the first choice in power generation and maybe the EPA will actually start regulating the disposal of coal ash.

The Power Grid Unable to Meet Our Needs

Wind energy is undoubtedly a flourishing alternative energy that will see much more growth, especially as it’s cost-per-watt continues to become more and more competitive with fossil fuels and other alternative energy sources. It is without a doubt that wind energy is going to play a major role in electricity generation in our society. People like T. Boone Pickens are major supporters of wind energy. Pickens wants to build the largest wind energy farm in the world in west Texas, but without some investments into the power grid, major wind energy farms, like the one Pickens wants to build, will be delayed or never built. The power grid gridlock is not only going to effect T. Boone Pickens monstrous wind farm, it will effect many newly proposed wind farms and it is already effecting currently operating wind farms like the Maple Ridge wind farm in upstate New York. The Maple Ridge farm has had to stop electricity production several times because the power grid was unable to properly distribute electricity. So what are we going to do if we are going to continue building solar and wind farms? Our only option is to upgrade the power grid so that it can properly distribute the electricity we generate.

The power grid is a large connection of electrical lines that is intended to keep electrical outages at a minimal and to maintain smooth, steady flow of electricity throughout the grid. Power companies can route electricity to different portions of the national grid in order to meet energy demand. The problem with the grid is that it is very outdated and is reaching it’s maximum capacities because America’s demand for electricity continues to grow. Both wind and solar energy plants are typically built in secluded areas with smaller populations because the power grid is so outdated it is becoming very difficult to route this power back to the populated areas of the country. The power grid is often described as a highway system. Like a highway system there are major highways, called backbones, smaller highways and “normal” roads. The power grid lacks “smarts”, and because of this, it is running into trouble with properly routing electricity correctly and proportionately. With the extra power generation from wind and solar many of the grid backbones (major highways) are becoming congested with an excess of electricity. This is forcing some alternative energy sources to have to shut down and halt their production of energy; a good example of this is the Maple Ridge wind farm in New York state (Source Link).

The power grid is in need of substantial amounts of investment in order to adequately handle new forms of energy generation. Modernization is absolutely necessary if we are to increase the use of wind and solar energy in our country. Many companies are looking into ways to make the grid “smarter”. Many argue that the biggest downfall to the power grid currently is the lack of an operating system, maintaining and monitoring the power grid. With the use of advanced monitoring devices for the home consumers can monitor their power usage and costs. These type of monitoring feedback systems can be implemented into the power grid by the utility companies themselves, which gives them better feedback of the actual electricity demands. Many utility companies offer this type of system currently and some utilities are offering discounts if you install this type of system. The need for this type of bidirectional communication within the power grid is completely necessary in order to improve efficient and distribution.

Another major component of the power grid is to maintain a smooth, steady flow of electricity at all times. With the increased use of solar, wind and even wave power, the electrical grid’s power generation can experience greater fluctuations. In portions of the country, days may go by where there is little sun. With very little sun comes very little electricity from solar plants. In order to combat this several companies are looking into different methods that can be used to store energy for usage at a later date. Energy can be stored using: batteries, hydrogen, compressed-air, flywheels, magnetically and pumping water. One storage method that seems to be gaining a lot of speed is compressed-air. Compressed-air allows utilities to store energy during off-peak times and then to use that compressed air at a later date to generate electricity. Several methods are used for storing the compressed air, one method is to use underground caverns and another such method is to use storage tanks. The beauty of compressing air for storage is it doesn’t use a valuable resource like water that is in very limited supply. Air is available in any location and an air-compressor storage can be relatively efficient at roughly 70%, if properly maintained. Superconducting magnetic energy storage and thermal energy storage both are expected to have efficiency ratings of above 95%. Thermal energy also has a very high efficiency rating and is getting a lot of attention because unlike superconducting magnetic energy storage is a much less complex storage system. Thermal designs typically use molten salt to store heat that can later be used to generate electricity. The other major player in energy storage is battery storage. Batteries can achieve efficiency ratings of 90% or greater, but batteries typically have a relatively short lifespan and producing batteries can be an energy intensive process. Batteries are readily available and functional. Because of the longevity of batteries and the amount of energy needed to produce and dispose of it, it makes them a poor long term storage choice unless improvements can be made in these areas. Personally if I had to choose, I would place my bets on thermal and compressed-air storage systems, they offer high efficiency ratings and are rather simplistic systems.

Another major step in upgrading the power grid is updating the electrical lines. Many areas of the country are experiencing bottlenecks due to electrical lines having reached their maximum capacity. This is similar to the problem that T. Boone Pickens is experiencing in Texas. Pickens though is offering to invest in a portion of the cost to upgrade the power grid in order to get his massive wind farms built and online. With the use of a smart power grid, electrical storage methods and improved transmission lines we will see a much more efficient and scalable national power grid.

Advancing Wind Power

GE is looking into several technologies that would advance wind energy in two ways: efficiency and reliability. GE is looking at using carbon composites, instead of fiber glass, as a material for wind turbine blades. GE is also looking at using different shaped blades in order to catch more wind, which will could allow the blades to rotate at slower wind speeds. Using carbon composites will give the blades increased strength which will allow the blades to operate at faster wind speeds as well as the ability to generate more energy. With the combination of longer blades, increased strength and different blade designs, GE hopes to increase the amount of energy generated from turbines without having to significantly increasing the size of the turbines. Increasing the size of the turbines means more raw materials, like steel, which also means more cost to GE and to their customers. GE hopes to keep costs down as much as possible while still increasing energy production from a wind turbine, this is important in order to keep wind energy an important, cost effective alternative energy source.

One of the biggest downfalls to wind energy, like solar, is the lack of consistency that can occur. Because wind turbines require the wind to create energy, if the wind is not blowing very hard or at all you are looking at less or no energy being produced. This can create disturbances in the power grid and power outages in areas of the country. Typically natural gas plants are used as backup power because natural gas plants can begin producing electricity relatively quickly and inexpensively when compared to other power plants, like coal. Due to the inconsistencies that can occur in wind power generation some are against wind power, while others have embraced wind as a viable energy producer. Supporters of wind acknowledge that it is not a perfect energy source, no energy source is flawless. Instead of giving up on wind energy they are developing methods that can be used to help improve the consistency of wind. GE is researching smart turbines and looking at ways to help develop a smart power grid to help alleviate this problem. GE hopes to you use software to find the best placement of wind farms and placement of turbines within a wind farm. GE is also looking into electronic control devices that would feed the power grid more efficiently and effectively. GE believes that if they can improve the turbines and the delivery of the power into the grid that many consistency problems can be largely improved. Others are looking at ways to store excess energy that can be used during times of limited wind or high energy demand. Companies like Energy Storage and Power are developing compressed air energy storage solutions. Basically a simplistic explanation of a compressed air energy storage is this: excess energy from the grid would be used to compress air that is stored in a storage tank. When the power grid is asking for more power than what is being produced the compressed air would be released from the the storage tanks and used to create energy. Now naturally there is some energy loss during the conversions but some of this excess energy is wasted anyways so at least this is a way to harness it at a later time.